I work on different neglected venomous taxa and apply in several projects the full plethora of methods in modern venomics. Within the new Animal Venomics group in Gießen even the expression and bioactivity testing of putative candidates is possible. Linked to the excellence program LOEWE Translational Biodiversitygenomics (LOEWE TBG) aspects of genomics are also more in the focus.

Methodological aspects in evolutionary and applied venomics

Current own projects

• Mechanisms of venom protein gene evolution in hymenopteran aculeates







Paradoxically hymenopteran venoms are not well known except for a few, single species. In a combined proteo-transcriptomics and genomics approach venom compositions of understudied taxa (solitary bees and wasps) are analysed and finally a venom protein gene evolution assessed.

Venom evolution in crustaceans especially remipedes, the first described venomous crustacean









Collecting remipedes by cave diving. Remipedes are as closest relative to insects a key taxon to understand insect evolution but also venom evolution in insects and crustaceans. For that reason I am currently assessing the bioactivity of several remipede toxins from Xibalbanuis tukumensis (Xibalbins) and sequence its genome to address toxin gene and pancrustacean evolution in more depth via comparative genomics. See also the genome sequencing project: Xibalbase

• Venom evolution in dipterans, especially robber flies








Reconstruction how  the venom delivery is accomplished in robber flies. Currently genome data of several species is used to understand the toxin gene evolution in this group. First results indicate a diverse mode of mechanisms, involving de novo gene evolution.

• Venom diversity and toxin gene evolution of marine worms: polychaetes and nemerteans






The venom system of the blood worm
(Glycera dibranchiata)










Proposed evolution of venom in ribbon worms (nemerteans) based on the proteo-transcriptomics analysis of Amphiporus lactifloreus



Collaborative projects

• Venom evolution in centipedes (NHM London, University of Oslo/Brisbane)






• Processes of venom protein evolution in the Borneo monitor lizard & anguimorph reptiles (LOEWE TBG)







• Processes of venom protein evolution in the larger weever fish (LOEWE TBG)





Link to collaborators:

Ronald Jenner, Department of Life Science, Natural History Museum London, UK
Eivind Undheim, Advanced Imaging Center, University of Queensland, AUS
Sebastien Dutertre, (CNRS), Institut des Biomolécules Max Mousseron, University Montpellier, F
Alexander Blanke, Institute for Zoology, University of Cologne, D